END TO END TESTS
WITH PROTRACTOR

Hugh McCamphill

Hugh McCamphill

 Test Lead with ShopKeep
* Organising Belfast Selenium Meetup since 2013

« Co-organizer of Belfast Software Testing Clinic
* @hughleoOl

@hughleo01

SETUP

Open https://github.com/hughleo/protractor-workshop
and follow instructions
At the end you should have running:
* Angular application (which we will run tests against)
 And a backing API (for the Angular app to talk to)
You should also have been able to run a test with:
protractor protractor.conf.js (terminal / command line)

@hughleo01

https://github.com/hughleo/protractor-workshop

AGENDA

* Getting Setup

e Intro

* Configuration

» TypeScript

* Promises and Control Flow
* Page Objects and DSL

* Data Builder Pattern
 Wrapper methods

e Async / Await

* Close

@hughleo01

Intro

@hughleo01

The application you’ll be working with

Popular Tags

@@@
No articles are here... yet. @@@
@

Your Feed

@hughleo01

4

Spring Boot Angular 4

(600
npm install -g @angular/cli AnglJIar CLI

ng new my-dream-app

A command line interface for Angular

cd my-dream-app

ng serve
GET STARTED

ng new

The Angular CLI makes it easy to create an application that already works, right out of the box. It

already follows our best practices!

ng generate

Generate components, routes, services and pipes with a simple command. The CLI will also create

simple test shells for all of these.

PROTRACTOR OVERVIEW

Protractor

WebDriverdS *

* Selenium WebDriver API
JavaScript Bindings

Browser

WebDriver
Browser Driver *

Angular App

* Selenium WebDriver Drivers

Chrome, other implementations

@hughleo01

Webdriver Manager

A selenium server and browser driver manager for your end to end tests. This is the same tool as webdriver-manager
from the Protractor repository.

Note: Version 9 and lower please reference pose/webdriver-manager. If there are features that existed in version 9 and
lower, please open up an issue with the missing feature or a create a pull request.

Getting Started

npm install -g webdriver-manager

DEMO

Running should navigate to create new article page in
eZe/specs/basic.eZe-spec.ts

@hughleo01

Exercise: Run first test

Ensure you have a working email / password in params.

const { browser } = require(’protractor');
const { SpecReporter } = require(’jasmine-spec-reporter');

exports.config = {
allScriptsTimeout: 11eee,
specs: [
*./e2e/**/example.e2e-spec.ts’
]

capabilities: {

In terminal / command line: "~

directConnect: true,

baseUrl: "http://localhost:42e8",

framework: 'jasmine®,

> t t t t f . jasmineNodeOpts: {
pro raC Or pro raC Or- Con IJS showColors: true,
defaultTimeoutInterval: 3eeee,
print: function() {}
I
params: {
user: {
email: 'hughlueof@email.com’,
password: ‘password’
1
b
onPrepare() {
require('ts-node').register({
project: 'e2e/tsconfig.e2e.json’
1
jasmine.getEnv().addReporter(new SpecReporter({ spec: { displayStacktrace: true } }});
}
}s

@hughleo01

TypesScript

TypeScript is a typed superset of JavaScript that compiles to plain JavaScript.

Any browser. Any host. Any OS. Open source.

@hughleo01

TYPESCRIPT

 Encapsulation through classes and modules

* Support for constructors, properties, functions
« Lambda style function support

* Provides static typing

» Intellisense and syntax checking

@hughleo01

. 4
Powered by P MO TAL LABS
'Jasmlne overety roe

Jump To: gjaxjs bootjs custom_equalityjs custom matcherjs introductionjs nodejs python egg.py ruby gemrb upgradingjs

introduction.js

Jasmine is a behavior-driven development framework for testing
JavaScript code. It does not depend on any other JavaScript
frameworks. It does not require a DOM. And it has a clean,
obvious syntax so that you can easily write tests. This guide is
running against Jasmine version 2.0.0.

Standalone Distribution

The releases page has links to download the standalone
distribution, which contains everything you need to start
running Jasmine. After downloading a particular version and
unzipping, opening Specrunner.html Will run the included specs.
You'll note that both the source files and their respective specs
are linked in the <head> of the SpecRunner.html. To start using
Jasmine, replace the source/spec files with your own.

Exercise

Add a method to EditorPage page object
* e2e/page-objects/basic/editor-page.po.ts
 Adding elements for title, description, body and

button
e Add method to enter these fields and click Publish

@hughleo01

Exercise

Add test for adding article
Go to e2e/specs/basic.eZe-spec.ts and finish the
test should add article
Use the page objects already created to complete
the test

@hughleo01

Demo : Page Objects

* Constructor for sync on page
* Return type for navigation

@hughleo01

Promises (and adding expectations)

@hughleo01

WebDriver]S 1s an asynchronous API,
where every command returns a
promise. This can make even the
simplest WebDriver scripts very
verbose. Consider the canonical

"Google search” test:

@hughleo01

let driver = new Builder().forBrowser('firefox’).build();
driver.get(http://www.google.com/ncr')
=» driver.findElement(By.name('q")))
> q.sendKeys('webdriver'))
> driver.findElement(By.name('btnG')))

» driver.wait(until.titlels('webdriver - Google Search’), 1008))
> driver.quit(), e => {
console.error(e);

driver.quit();

1)

@hughleo01

WebDriver]S uses a promise
manager that tracks command
execution, allowing tests to be written as
if they were using a synchronous API:

@hughleo01

http://seleniumhq.github.io/selenium/docs/api/javascript/module/selenium-webdriver/lib/promise.html

let dri

driver
driver.

driver.

driver
driver

iver = new Builde
;_FdE1=ﬂ=ﬂTIE” name({ 'q"

findElement(By.name('btnG")).
.H?:T~UHtll titlels("webdriver

http:ffwmw.gmmgle.cmmfﬂcﬁ);

IHHHJ;

@hughleo01

Demo: Promise returned from method

Demoing in e2e/specs/promise.eze-spec.ts

with 'should navigate to create new article’

@hughleo01

Exercise

Resolve promise when returning from a method

« Go to e2e/specs/basic.e2e-spec.ts

 Add expectation that article was added in ‘should add
article’

@hughleo01

The WebDriver Control Flow

The WebDriver]S APl is based on promises, which are managed by a control flow and adapted for Jasmine. A short summary
about how Protractor interacts with the control flow is presented below.

Disabling the Control Flow

In the future, the control flow is being removed (see SeleniumHQ's github issue for details). To disable the control flow in your
tests, you can use the SELENIUM PROMISE_MANAGER: false config option.

Instead of the control flow, you can synchronize your commands with promise chaining or the upcoming ES7 feature
async / await . See /spec/ts/ for examples of tests with the control flow disabled.

Because async / await uses native promises, it will make the Control Flow unreliable. As such, if you're writing a library or
plugin which needs to work whether or not the Control Flow is enabled, you'll need to handle synchronization using promise
chaining.

Promises and the Control Flow

WebDriver)S (and thus, Protractor) APIs are entirely asynchronous. All functions return promises.

WebDriver)S maintains a queue of pending promises, called the control flow, to keep execution organized. For example,
consider this test:

@hughleo01

const { browser } = require(’'protractor’);
const { SpecReporter } = require(’jasmine-spec-reporter’);

exports.config = {
allScriptsTimeout: 11868,
specs: [
. /e2e/**/example.aysnc.e2e-spec.ts’

1
SELENIUM PROMISE MANAGER: false,
capabhilities: {
‘browserName”: "chrome’
L
directConnect: true,
baseUrl: "http://localhost:4288°,
framework: "“jasmine’,
jasmineNodeOpts: {
showColors: true,
defaultTimeoutInterval: 38088,
print: function() {}
L
params: {
user: {
Q email: "hughleo@email.com’,
password: ‘password’
Ii
L
onPrepare() {
require(ts-node’).register({
project: ‘e2eftsconfig.e2e.json’
H;
jasmine.getEnv().addReporter(new SpecReporter({ spec: { displayStacktrace: true } }));
}
};

@hughleo01

Demo: Async / Await

@hughleo01

Exercise: Run async tests

* Go to e2e/specs/example.aysnc.e2e-spec.ts
* Run ‘'should add article' test

* Note the order in which the operations happen

@hughleo01

Exercise

Update page object to do operations in order
 Go to e2e/page-objects/async/editor-page.po.ts

 Add async / await operations
 Update return type to be a promise
* Run previous test again

@hughleo01

Demo: Wrapping Methods

@hughleo01

Exercise: Add a clear and send keys method
and use it for editor page

 Go to e2e/wrappers/element-wrapper.ts
« Add the clearAndSendKeys method
« Add calling it in updateArticleContent in e2e/page-

objects/async/editor-page.po.ts

@hughleo01

Demo: domain models and builders

@hughleo01

Exercise: Use domain object

Instead of passing information into article method one
variable at a time, pass it in as an object

@hughleo01

Exercises

« Add atestto
— Add comments to an article
— Add then delete an article
— Add then edit an article

@hughleo01

Recap

Protractor

Webdriver Manager
TypeScript

Promises and Control Flow
Async / Await

Page Objects and DSL
Data Builder Pattern

Wrapper methods

@hughleo01

How to’s

@hughleo01

Waiting with sleeps

* If the sleep you have added is too short, then your test
may fail

» If the sleep you have added is too long, then you are
waiting unnecessarily, and this is a big deal when you
start to scale your number of tests

@hughleo01

Prefer explicit waits

owser kL rotracto. ExpctedConcztions LContang{ oL, 1000

@hughleo01

Ignoring Synchronization

If for example you had a login page that wasn’t an angular page
signIn{user: User): HomePage {
hrﬂwser.waitFﬂPAngulaPEnabled{False}J
this.emailField. sendKeys(user.email);
this.passwordField.sendKeys({user.password);

this.signInField.click();

browser.waitForAngularEnabled(true);
return new HomePage();

@hughleo01

Using Generics for deciding navigation

clickYourFeed<T>(c: { new(): T; }): T {
this.yourFeed.click();
return new c();

}

homePage = new HomePage();

- —

fSf it I was logged in
homePage.clickYourFeed(YourFeed);

f if I was not logged in

homePage.clickYourFeed(SignIn);

@hughleo01

Close out

@hughleo01

Set directConnect to false to run

tests through a grid / cloud service

capabilities: {
‘browserName’: ‘chrome’
1.
directConnect: :true,
basallnlehibba:d flocalhost:-4208"° ,
framework: 'jasmine’,
jasmineNodeOpts: {
showColors: true,
defaultTimeoutInterval: 38808,
print: function() {}

1
params: {
user: {
email: "hughleo@email.com”,
password: ‘password’
}
1

onPrepare() {
require(ts-node").register({
project: 'eZe/tsconfig.eZe.json’
b
jasmine.getEnv().addReporter({new SpecReporter({ spec
}
¥

: { displayStacktrace: true } }));

@hughleo01

const { browser } = require{'protractor’);
const { SpecReporter } = require(’jasmine-spec-reporter’);

Amending baseUrl

IE
capabilities: {
‘browserMame’: ‘"chrome’

}l

dirartCoannect - trus

baseUrl: "http://localhost:4288°,

N == _

- = Sy

jasmineNodeOpts: {
showColors: true,
defaultTimeoutInterval: 36860,
print: function() {}

}s
params: {
user: {
email: "hughleo@email.com”,
password: ‘password’
}
}s

onPrepare() {
require('ts-node’).register({
project: 'eZe/tsconfig.eZe.json’
1
jasmine.getEnv().addReporter{new SpecReporter({ spec: { displayStacktrace: true } }));
}
};

ghleo01

